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In the mathematical field of differential geometry, a smooth map from one Riemannian manifold to 

another Riemannian manifold is called harmonic if its coordinate representatives satisfy a certain 

nonlinear partial differential equation. This partial differential equation for a mapping also arises as 

the Euler-Lagrange equation of a functional generalizing the Dirichlet energy (which is often itself 

called "Dirichlet energy"). As such, the theory of harmonic maps encompasses both the theory of unit-

speed geodesics in Riemannian geometry, and the theory of harmonic functions on open subsets 

of Euclidean space and on Riemannian manifolds. Informally, the Dirichlet energy of a 

mapping f from a Riemannian manifold M to a Riemannian manifold N can be thought of as the total 

amount that f "stretches" M in allocating each of its elements to a point of N. For instance, a rubber 

band which is stretched around a (smooth) stone can be mathematically formalized as a mapping 

from the points on the unstretched band to the surface of the stone. The unstretched band and stone 

are given Riemannian metrics as embedded submanifolds of three-dimensional Euclidean space; the 

Dirichlet energy of such a mapping is then a formalization of the notion of the total tension involved. 

Harmonicity of such a mapping means that, given any hypothetical way of physically deforming the 

given stretch, the tension (when considered as a function of time) has first derivative zero when the 

deformation begins. The techniques used by Richard Schoen and Uhlenbeck to study the regularity 

theory of harmonic maps have likewise been the inspiration for the development of many analytic 

methods in geometric theory. 

 

Introduction 

The theory of harmonic maps was initiated in 1964 by James Eells and Joseph Sampson, who 

showed that in certain geometric contexts, arbitrary smooth maps could be deformed into 

harmonic maps. Their work was the inspiration for Richard Hamilton's first work on the Ricci 

flow. Harmonic maps and the associated harmonic map heat flow, in and of themselves, are 

among the most widely studied topics in the field of geometric analysis. 

The discovery of the "bubbling" of sequences of harmonic maps, due to Jonathan Sacks 

and Karen Uhlenbeck, has been particularly influential, as the same phenomena has been 

found in many other geometric contexts. Notably, Uhlenbeck's parallel discovery of bubbling 

of Yang–Mills fields is important in Simon Donaldson's work on four-dimensional 
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manifolds, and Mikhael Gromov's later discovery of bubbling of pseudoholomorphic 

curves is significant in applications to symplectic geometry and quantum cohomology.  

Mathematical Meaning 

Here the notion of the laplacian of a map is considered from three different perspectives. A 

map is called harmonic if its laplacian vanishes; it is called totally geodesic if its hessian 

vanishes. 

Integral formulation 

Let (M, g) and (N, h) be Riemannian manifolds. Given a smooth map f from M to N, 

the pullback f *h is a symmetric 2-tensor on M; the energy density e(f) of f is one-half of 

its g-trace. If M is oriented and M is compact, the Dirichlet energy of f is defined as, 

where dμg is the volume form on M induced by g. Even if M is noncompact, the following 

definition is meaningful: the Laplacian or tension field Δf of f is the vector field 

in N along f such that for any  one-parameter family of maps fs : M → N with f0 = f and for 

which there exists a precompact open set K of M such that fs|M − K = f|M − K for all s; one 

supposes that the parametrized family is smooth in the sense that the associated map (−ε, ε) 

× M → N given by (s, p) ↦ fs(p) is smooth.In case M is compact, the Laplacian of f can then 

be thought of as the gradient of the Dirichlet energy functional. 

Local coordinates 

Let U be an open subset of ℝm and let V be an open subset of ℝn. For each i and j between 1 

and n, let gij be a smooth real-valued function on U, such that for each p in U, one has that 

the m × m matrix [gij (p)] is symmetric and positive-definite. For each α and β between 1 

and m, let hαβ be a smooth real-valued function on V, such that for each q in V, one has that 

the n × n matrix [hαβ (q)] is symmetric and positive-definite. Denote the inverse matrices 

by [gij (p)] and [hαβ (q)]. 

For each i, j, k between 1 and n and each α, β, γ between 1 and m define the Christoffel 

symbols Γ(g)k
ij : U → ℝ and Γ(h)γαβ : V → ℝ 

Given a smooth map f from U to V, its hessian defines for each i and j between 1 and m and 

for each α between 1 and n the real-valued function ∇(df)αij on U by 

Its laplacian or tension field defines for each α between 1 and n the real-valued 

function (∆f)α on U. 
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Bundle formalism 

Let (M, g) and (N, h) be Riemannian manifolds. Given a smooth map f from M to N, one can 

consider its differential df as a section of the vector bundle T *M ⊗ f *TN over M; all this says 

is that for each p in M, one has a linear map dfp as TpM → Tf(p)N. The Riemannian metrics 

on M and N induce a bundle metric on T *M ⊗ f *TN, and so one may define 1/2 | df |2 as a 

smooth function on M, known as the energy density. 

The bundle T *M ⊗ f *TN also has a metric-compatible connection induced from the Levi-

Civita connections on M and N. So one may take the covariant derivative ∇(df), which is a 

section of the vector bundle T *M ⊗ T *M ⊗ f *TN over M; this says that for each p in M, one 

has a bilinear map (∇(df))p as TpM × TpM → Tf(p)N. This section is known as the hessian of f. 

Using g, one may trace the hessian of f to arrive at the laplacian or tension field of f, which is 

a section of the bundle f *TN over M; this says that the laplacian of f assigns to each p in M an 

element of Tf(p)N. It is defined by 

where e1, ..., em is a gp-orthonormal basis of TpM. 

Examples of harmonic maps 

Let (M, g) and (N, h) be smooth Riemannian manifolds. The notation gstan is used to refer to 

the standard Riemannian metric on Euclidean space. 

 Every totally geodesic map (M, g) → (N, h) is harmonic; this follows directly from 

the above definitions. As special cases: 

 For any q in N, the constant map (M, g) → (N, h) valued at q is harmonic. 

 The identity map (M, g) → (M, g) is harmonic. 

 

 If f : M → N is an immersion, then f : (M, f *h) → (N, h) is harmonic if and only 

if f is minimal relative to h. As a special case: 

 If f : ℝ → (N, h) is a constant-speed immersion, then f : (ℝ, gstan) → (N, h) is harmonic 

if and only if f solves the geodesic differential equation. 

Recall that if M is one-dimensional, then minimality of f is equivalent to f being 

geodesic, although this does not imply that it is a constant-speed parametrization, and 

hence does not imply that f solves the geodesic differential equation. 

 A smooth map f : (M, g) → (ℝn, gstan) is harmonic if and only if each of 

its n component functions are harmonic as maps (M, g) → (ℝ, gstan). This coincides 

with the notion of harmonicity provided by the Laplace-Beltrami operator. 
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 Every holomorphic map between Kahler manifolds is harmonic. 

 Every harmonic morphism between Riemannian manifolds is harmonic. 

Harmonic map heat flow 

Let (M, g) and (N, h) be smooth Riemannian manifolds. A harmonic map heat flow on an 

interval (a, b) assigns to each t in (a, b) a twice-differentiable map ft : M → N in such a way 

that, for each p in M, the map (a, b) → N given by t ↦ ft (p) is differentiable, and its 

derivative at a given value of t is, as a vector in Tft (p)N, equal to (∆ ft )p. This is usually 

abbreviated as: 

Eells and Sampson introduced the harmonic map heat flow and proved the following 

fundamental properties: 

 Regularity. Any harmonic map heat flow is smooth as a map (a, b) × M → N given 

by (t, p) ↦ ft (p). 

Now suppose that M is a closed manifold and (N, h) is geodesically complete. 

 Existence. Given a continuously differentiable map f from M to N, there exists a 

positive number T and a harmonic map heat flow ft on the interval (0, T) such 

that ft converges to f in the C1 topology as t decreases to 0. 

 Uniqueness. If { ft : 0 < t < T } and { f t : 0 < t < T } are two harmonic map heat flows 

as in the existence theorem, then ft = f t whenever 0 < t < min(T, T). 

As a consequence of the uniqueness theorem, there exists a maximal harmonic map heat flow 

with initial data f, meaning that one has a harmonic map heat flow { ft : 0 < t < T } as in the 

statement of the existence theorem, and it is uniquely defined under the extra criterion 

that T takes on its maximal possible value, which could be infinite. 

Eells and Sampson's theorem 

The primary result of Eells and Sampson's theorem is the following: 

Let (M, g) and (N, h) be smooth and closed Riemannian manifolds, and suppose that 

the sectional curvature of (N, h) is nonpositive. Then for any continuously differentiable 

map f from M to N, the maximal harmonic map heat flow { ft : 0 < t < T } with initial 

data f has T = ∞, and as t increases to ∞, the maps ft subsequentially converge in 

the C∞ topology to a harmonic map. 

In particular, this shows that, under the assumptions on (M, g) and (N, h), every continuous 

map is homotopic to a harmonic map. The very existence of a harmonic map in each 

homotopy class, which is implicitly being asserted, is part of the result. In 1967, Philip 
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Hartman extended their methods to study uniqueness of harmonic maps within homotopy 

classes, additionally showing that the convergence in the Eells-Sampson theorem is strong, 

without the need to select a subsequence. Eells and Sampson's result was adapted to the 

setting of the Dirichlet boundary value problem, when M is instead compact with nonempty 

boundary, by Richard Hamilton in 1975. 

For many years after Eells and Sampson's work, it was unclear to what extent the sectional 

curvature assumption on (N, h) was necessary. Following the work of Kung-Ching Chang, 

Wei-Yue Ding, and Rugang Ye in 1992, it is widely accepted that the maximal time of 

existence of a harmonic map heat flow cannot "usually" be expected to be infinite. Their 

results strongly suggest that there are harmonic map heat flows with "finite-time blowup" 

even when both (M, g) and (N, h) are taken to be the two-dimensional sphere with its 

standard metric. Since elliptic and parabolic partial differential equations are particularly 

smooth when the domain is two dimensions, the Chang-Ding-Ye result is considered to be 

indicative of the general character of the flow. 

Bochner formula and rigidity 

The main computational point in the proof of Eells and Sampson's theorem is an adaptation 

of the Bochner formula to the setting of a harmonic map heat flow { ft : 0 < t < T }. This 

formula says 

This is also of interest in analyzing harmonic maps themselves; suppose f : M → N is 

harmonic. Any harmonic map can be viewed as a constant-in-t solution of the harmonic map 

heat flow, and so one gets from the above formula that 

If the Ricci curvature of g is positive and the sectional curvature of h is nonpositive, then this 

implies that ∆e(f) is nonnegative. If M is closed, then multiplication by e(f) and a single 

integration by parts shows that e(f) must be constant, and hence zero; hence f must itself be 

constant. Richard Schoen & Shing-Tung Yau (1976) note that this can be extended to 

noncompact M by making use of Yau's theorem asserting that nonnegative subharmonic 

functions which are L2-bounded must be constant. In summary, according to Eells & 

Sampson (1964) and Schoen & Yau (1976), one has: 

Let (M, g) and (N, h) be smooth and complete Riemannian manifolds, and let f be a harmonic 

map from M to N. Suppose that the Ricci curvature of g is positive and the sectional curvature 

of h is nonpositive. 
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 If M and N are both closed then f must be constant. 

 If N is closed and f has finite Dirichlet energy, then it must be constant. 

In combination with the Eells-Sampson theorem, this shows (for instance) that if (M, g) is a 

closed Riemannian manifold with positive Ricci curvature and (N, h) is a closed Riemannian 

manifold with nonpositive sectional curvature, then every continuous map from M to N is 

homotopic to a constant. 

The general idea of deforming a general map to a harmonic map, and then showing that any 

such harmonic map must automatically be of a highly restricted class, has found many 

applications. For instance, Yum-Tong Siu (1980) found an important complex-analytic 

version of the Bochner formula, asserting that a harmonic map between Kahler 

manifolds must be holomorphic, provided that the target manifold has appropriately negative 

curvature. As an application, by making use of the Eells-Sampson existence theorem for 

harmonic maps, he was able to show that if (M, g) and (N, h) are smooth and closed Kähler 

manifolds, and if the curvature of (N, h) is appropriately negative, then M and N must be 

biholomorphic or anti-biholomorphic if they are homotopic to each other; the 

biholomorphism (or anti-biholomorphism) is precisely the harmonic map produced as the 

limit of the harmonic map heat flow with initial data given by the homotopy. By an 

alternative formulation of the same approach, Siu was able to prove a variant of the still-

unsolved Hodge conjecture, albeit in the restricted context of negative curvature. 

Applications 

 If, after applying the rubber M onto the marble N via some map,  one "releases" it, it 

will try to "snap" into a position of least tension. This "physical" observation leads to 

the following mathematical problem: given a homotopy class of maps from M to N, 

does it contain a representative that is a harmonic map? 

 Existence results on harmonic maps between manifolds has consequences for 

their curvature. 

 Once existence is known, how can a harmonic map be constructed explicitly? (One 

fruitful method uses twistor theory) 

 In theoretical physics, a quantum field theory whose action is given by the Dirichlet 

energy is known as a sigma model. In such a theory, harmonic maps correspond 

to instantons. 
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 One of the original ideas in grid generation methods for computational fluid dynamics 

and computational physics was to use either conformal or harmonic mapping to 

generate regular grids. 
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